tune
Tune submodule for configuring optimisation jobs.
Tuner
Tuner(
*,
objective: ObjectiveSpec | list[ObjectiveSpec],
parameters: list[ParameterSpec],
num_samples: int,
mode: Direction | list[Direction] = "max",
max_concurrent: Optional[int] = None,
algorithm: Optional[OptunaSpec] = None,
)
A class for running optimisation on Plugboard processes.
Instantiates the Tuner
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
objective
|
ObjectiveSpec | list[ObjectiveSpec]
|
The objective(s) to optimise for in the |
required |
parameters
|
list[ParameterSpec]
|
The parameters to optimise over. |
required |
num_samples
|
int
|
The number of trial samples to use for the optimisation. |
required |
mode
|
Direction | list[Direction]
|
The direction of the optimisation. |
'max'
|
max_concurrent
|
Optional[int]
|
The maximum number of concurrent trials. Defaults to None, which means that Ray will use its default concurrency of 1 trial per CPU core. |
None
|
algorithm
|
Optional[OptunaSpec]
|
Configuration for the underlying Optuna algorithm used for optimisation. |
None
|
is_multi_objective
property
Returns True
if the optimisation is multi-objective.
result_grid
property
Returns a [ResultGrid
][ray.tune.ResultGrid] summarising the optimisation results.
run
Run the optimisation job on Ray.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spec
|
ProcessSpec
|
The |
required |
Returns:
Type | Description |
---|---|
Result | list[Result]
|
Either one or a list of [ |
Result | list[Result]
|
result. Use the |